
ISSN 2661-2666 (Online) International Scientific Journal Monte (ISJM) DOI:

10.33807/monte.20232840 Volume 7, (No).2 (2023): April

46

Substantial security challenge to web applications, using modified OTC and OWASP

update

Aleksander Biberaj, Igli Tafa, Kristi Ndoni , Islam Tahiraj, Andrea Muco

Faculty of information and technology

Polytechnic University Of Tirana

Tirana, Albania

abiberaj@fti.edu.al, itafaj@fti.edu.al, kristi.ndoni@fti.edu.al , andrea.muco@fti.edu.al , islam.tahiraj@fti.edu.al

Abstract

Internet security is studied by computer science and serves as a

safe medium for exchanging data while minimizing the likelihood

of online threats. Through use of advanced web-based software is

growing because they provide the user with a lot of features. Web

technologies have an important role in different industries, like

schooling, retail, medical care, and payment systems. Session bugs

are becoming more common throughout web applications whereas

their value in community grows. Hackers try to profit of

incorrectly designed websites so they take hold of victim's sessions

and also of identities. As a result, session handling represents a

substantial security challenge to web applications. Weak

programming methods are among the causes for effective session

acquisition. A further explanation is that the server as well as the

customer verify themselves differently at first.

In the recent years most common strikes used amongst

attackers is session hijacking. Based on latest recent OWASP

update, session hijacking is indeed one of the second frequent

assault that happens mostly. It is one important attack among

others, which a hacker may use to connect directly to a customer's

operating session. User Hijacking occurs when a hacker takes

victim's session id, and uses it to obtain entry into the victim's

actual session. This system will provide protection in case of

this attack form once it has been successfully implemented.

Keywords—sessions, cookies, hijacking, attacks, hacker,

cybersecurity, bug, vulnerability, one time cookies, HTTP, sql

injections.

I. INTRODUCTION

People are seeing a realistic advancement of both the internet
also of web technologies in current history. Most programs
previously ran on desktop back in the day. However, tables have
turned, and certain programs can be accessed via a browser. As
a result, websites that were once static HTML websites have

evolved into interactive Web apps, or full of content services
available everywhere on Internet. Commercial transfers and
mail sharing are only two of the utilities provided by web apps.
The financial sector, schooling as well as related organisations,
care and wellness facilities, various corporate groups, and state
institutions are some of most influential industries in
which web-based technologies are main tool of optimizing
everyday operational efficiency or updating current system.
Users may acquire a core resource, including Web server, as
well as other resources, including database servers, via web
apps. Users think these technologies are safe, however the fact
is that certain web apps have serious security vulnerabilities that
cause basic hacks to occur.

Session bugs are the most prevalent risk within web-based
apps. All of that is attributed to web application's poor session
control. Attackers take advantage of incorrectly designed
websites and hijack user's sessions, which leads in identity theft.
Session states stores precious data, so this sensitive data, e.g
session state, provides an important objective for attackers.
Whenever a person has to login to a protected website, user must
fill information that verifies their legitimacy, including a
username, password, or even a birthdate and contact
information, which enables them to verify their identity also to
unlock the information available. To reduce complexity of re-
authentication, session control involves web-based application
to build a session because then user does not have to go through
this process any moment they want to do something. Session
control means that a person connecting to cloud and
viewing information is same user that logs during first time. As
a result, unauthorized users also attackers aim sessions, which
can be exploited to obtain access to the device with no need
of authentication. User identifiers are the most popular method
of session control.

A session begins whenever a user accesses or logs to another
certain web site or application via their device, that concludes
once consumer closes or logs out of the device, or closes website
also the application. While connected, a session will briefly
store data correlated also with actions of consumers. Primary
purpose of session would be to keep track of user's
authentication information, as well as the working session
allows the user to enter the program. A session key, known

https://doi.org/10.33807/monte.20232840
https://doi.org/10.33807/monte.20232840
mailto:abiberaj@fti.edu.al
mailto:itafaj@fti.edu.al
mailto:kristi.ndoni@fti.edu.al
mailto:andrea.muco@fti.edu.al
mailto:islam.tahiraj@fti.edu.al

ISSN 2661-2666 (Online) International Scientific Journal Monte (ISJM) DOI:

10.33807/monte.20232840 Volume 7, (No).2 (2023): April

47

as SID, would be a name=value combination. Value seems to
be a sequence of alphanumeric characters that corresponds to a
web session. Every submitted query will have the SID inserted
or added to it, the SID can be used as an identity provider inside
the program. As a result, the SID must be created as well as to
be stored safely. Data breach and Session Management attacks
are third most significant Web application security concern,
according to Open Web Application Security Project (OWASP).
Session hijacking, session locking, or network-based spying
attempts, are all popular techniques on session control.

In this paper, its presented an analysis on different session-
related weaknesses as well as detection and prevention
strategies, as well as different algorithms used in this branch.

LITERATURE REVIEW

A. Session hijacking

One frequent form of threat is session hijacking. Due
to obvious ease with which attackers can connect directly to
session, makes this form of attack dangerous[1]. Whenever an
person is logging in, also about to log in to the system but has
also formed a link also with server, intruder hijacks session
while pretending to be original consumer. Once intruder gets
control inside the server, he does not have to go to any efforts to
break login key because he's been verified to get the connection.
Client hijacking is where a hacker takes around a user's session
key also has complete ownership of such machine
although session also is running[2].

Active session hijacking occurs when an attacker assumes
control of an operating data channel. The intruder will silence
one computer, usually user desktop, as well as to take over user's
position throughout contact interaction here between server as
well as digital device, releasing server as well as the user
computer's connection[3].

Passive session hijacking is similar to active session, but
rather than removing consumer out of active session, hacker
monitors communication within the server as well as desktop
device. Inside a passive link, attacker tracks person's details
also saves everything inside an personal database with attacking
purposes. It's also recommended that an intruder begin by
hijacking a passive session[4].

B. Related Works

With initial introduction throughout mid-90s, using cookies
like session authentication tokens had already created privacy
issues. Many other studies have shown that web authentication
schemes have many flaws, like susceptibility of session
hijacking threats[5],[6].

Browsers do have variety of bugs. Webpages have been
shown to be susceptible to cyberattacks every ten minutes.
That's why it is important to comprehend and address threat of
such assault. Session-related bugs are well-known comparing
to others. Several experts as well as academics already

suggested numerous identification and avoidance
approaches.That why security analysts have suggested
improvements to strengthen authentication cookies' reliability.
[7] proposed cookie systems which use possibly the best
cryptographic approaches of having greater security as well
as credibility assurances. Furthermore, some writers suggested
that cookie expiry dates is being used to mitigate effects of
session hijacking threats. Most systems, though, utilize longer
termination periods to prevent compromising costumer
experience, which reduces the feasibility of such strategy.

Cache cookies which are various types of permanent state
within web (that is, client data, short term internet documents),
have been found helpful to cookies in preserving client as well
as session identities by [8]. Cache cookies, although immune
towards phishing threats, anyway they require HTTPS security
to avoid malicious activities. Linked threats, as illustrated by [9],
present quite a modern category of cookie-stealing threats
wherein cookies saved through one page could also be changed
from an other if indeed both of domains possess a considerably
longer prefix. To counteract such threats, results recommend
core cookies, a simple addition to regular cookies with low
operational cost.

Authors Felten and Schneider were ones to bring issue about
intrusive cached data to notice[10], plus they were also the ones
who created so called phrase "cache cookies." Researchers
demonstrated why a host may identify the characteristics of a
specific email attachment in such a web browser, allowing
stored pictures being used as data tags.

Its methods, but at other hand, were recorded in the data
studies and therefore are relatively hard to complete.

Researcher [11], on the other hand, revealed that store data
depending on internet backgrounds might have been more
readily exploited. A byproduct of Css (technology of displaying
Webpages) allows a site to include software in a website
which identifies if one client has one certain site inside its
memory.

[12] investigate potential consequences of cached data or
associated computer capabilities, which offer a comprehensive
perspective of site to site domain tracing risks for consumers.
Users often discover new aspects of cached data, like object
identifiers, something we'll talk about later. [13] suggest using
web applications that impose uniform security standards along a
variety of cross-domain monitoring mechanisms.

Likewise, we focus upon on beneficial aspects using caching
data inside this study. Here are suggested strategies that benefit
from caching data whilst aggravating security issues.

II. SESSION HIJACKING VULNERABILITIES

Session monitoring keeps record to customer's behavior
through several connections into webpages. Common
application of monitoring is mostly sign in, because they are
often included where customer expected sign in does not occur,
like on certain b2b companies including networking platforms.

https://doi.org/10.33807/monte.20232840
https://doi.org/10.33807/monte.20232840

ISSN 2661-2666 (Online) International Scientific Journal Monte (ISJM) DOI:

10.33807/monte.20232840 Volume 7, (No).2 (2023): April

48

Most common method of doing this is assigning each
individual a special code, like a connection identifier also either
one connection token. Usually, several methods are used to
enforce tokens:

• Cookie is used for token storing.

• Token is submitted throughout secret sectors generated
from particular system type.

• Tokens get attached inside every connection that visitor
taps after they have been generated throughout system.

Some tools are used in connection monitoring. Few
programs, as starters, utilize HTTP verification. For submitting
login information, search engine might utilize Http request
instead of system's Website script. Nearly all this type
of verification remains uncommon. Some apps utilize
sessionless systems, which means apps wont utilize tokens and
just transmit customer's information between every system
contact. Typically, cryptographic algorithms are being
utilized in accompanied by method[14].

The most serious vulnerabilities relating session hijacking
are in the token generation and session monitoring strategies.

A. Token generation

Such type of vulnerability allows hackers to establish a
token, so as a result they can use legitimate token. Tokens may
get obtained when putting different elements of customer data,
including username and perhaps e-mail address. Any hacker
may decrypt token as well as generate a legitimate one when
the methods are adjustable. Tokens may also form out of
alphabetic character series components only with condition that
every token generates irregularly[15]. Whenever token-
generating algorithm implements one of three techniques,
hackers have better chances of predicting tokens. Encrypted
variations build tokens from encoding any standard numerical
series. Infirm generation method seems to be third approach
here. Since machines depend of deterministic processes, they
don't seem to offer flexibility. Computers use arbitrary
value producers to get around the problem (pseudorandom
number generators). Distinct input devices, including sound
panel performance as well as amount of button presses,
get combined to produce PRNGs[16].

Fig. 1. Session hijacking hack is carried out by modifying a

token session.

B. Sessions control mechanisms

Although tokens are produced correctly and volatility,
hackers may be clever enough to tackle them. Hackers will do
so by taking advantage of unsecured packets including
vulnerabilities with in secret algorithms which websites needs
in producing tokens. Tokens can also be intercepted through
looking for in log data like window reports, proxy logs. Any
hacker will retrieve token from logs when its included in a URL
as variable. One further option is looking for tokens inside
search engine as well as proxy buffer, that will save whole site
also response headers. Utilizing weak token assignment
systems, granting different tokens to similar consumer,
also using fixed tokens of every customer are few of
many methods. Furthermore, ineffective session closure
strategies open up several cyber threats. Activity must be short
also feasible to decrease contextual timeframe of threats. Since
certain programs don't have a procedure specific to session's
termination, hackers will seek several different properties prior
to session ending. Whenever customer signs off, system
deletes token from client's computer; however, because
customer (either a hacker) has sent any formerly accessed token,
system continues allowing it [17].

In plight scenarios, system gets zero demand during sign

out also the connection is not invalidated. When any intruder

acquires that key, he or she will be able to still employ session

much like a person that has not signed out at all. Eventually,

unless tokens are stored inside cookies, cookie variables can be

vulnerable to many attacks. Because protected label is not

placed inside cookies, it gets transmitted through unsecured

packets [18]. Cross-site scripting threats will capture hackers

https://doi.org/10.33807/monte.20232840
https://doi.org/10.33807/monte.20232840

ISSN 2661-2666 (Online) International Scientific Journal Monte (ISJM) DOI:

10.33807/monte.20232840 Volume 7, (No).2 (2023): April

49

because HTTPOnly marker hasn't been placed. The reach of a

cookie may be used by hackers. Some weaknesses are related

to incorrect HTTPS utilization. For starters, certain programs

recognize HTTPS secured sectors yet are using matching token

outer of secured sectors. As a result, hackers will get token

through eavesdropping HTTP traffic. Second, also inside

secured sectors HTTPS can be utilized, several systems support

HTTP protocol. For this reason , hackers may persuade

customers to send HTTP calls so they snatch token. Spoofing

emails, posters, and psychological manipulation are widely

used in several threats. Ultimately, many apps utilize HTTP for

viewing static resources such as photos, script as well as Css.

Detecting such inquiries allows hackers catching tokens.

Hackers will pull out threats including cross-site request
forgery, session sniffing, predicting, as well as session fixation,
also HTTP reply separating through leveraging
weaknesses already mentioned above. Here its defined the
triggering weaknesses to every threat, that hackers should
check prior to launching a thrust [19].

C. Session sniffing

Such threats include indirectly blocking any
information gathered being shared in sessions.

a) HTTP packets sniffing.

 HTTP streams are intercepted within that attempt. Hackers
should find any analyzer on a computer inside this user's system
or even Website software's institution's domain. Four supporting
underlying problems exist. Initially, non-HTTPS areas of such
site may be identified. Stable marker is also not fixed, for
starters. Third, service provides HTTP calls to sites that are
protected by HTTPS. Consequently, prior to
authorization, program employs HTTP[20],[21].

b) Cache sniffing

Token can be obtained in every configuration including
them if hacker gains entrance to proxy cache as well as search
engine. Two triggering weaknesses are related to cache
management of Webpage. HTTP response headers does not
include instructions. Than CacheControl:private policy hardly
allows buffer to be used on computer where customer is
currently running. With distributed computers, such scenario
poses danger (e.g. in Internet cafes)[22].

c) Sniffing logs.

Tokens are obtained through reviewing logs with in various
structures engaged with server-client interaction throughout this
threat. Two supporting weaknesses in this system exist.
Primarily, token gets sent through URL variables, that also
means token could end up with in logs. To continue, token gets
sent with a secret sector, also GET calls are accepted rather than
POST requests by system. The client-side scripting file may
implement this same demand reversal. Token gets submitted
as URL variable, resulting logs will contain it.

d) CSRF

Such threat induces that target performs acts inside an
environment where they have been authenticated; a common
tactic would be to deliver connection via email either via instant
messages. This threat has the potential to damage
customer details. Distinctly of several other threats CSRF also
attempts to perform precise activities rather than gaining session
access[23].

e) Fixation of the session

Even before one user's authorization, hacker
addresses token. There are three stages towards hacker's threat:

1-The first step is to establish the session.

Hacker establishes so called “bait session” into the computer

also accepts either generates key. Under certain instances,

intruder will submit demands during routine periods to

maintain the connection active, so called session maintenance.

2-Fixation of the session. Token is inserted through user ’s

machine by the hacker.

3-The access into the connection. Hacker awaits around

upon victim so they access session before hacker attempts

getting connected himself. There are two types of

connection control algorithms:

• Rigorous systems permits just established, predefined
tokens, while tolerant systems welcomes recent tokens
which launch brand fresh connection.

• Hacker offers specific tokens also utilizes them
into tolerant schemes. In rigid schemes, hacker opens
one connection which gets leave active during threat.

Conditioned by process of transmitting each token, various
methods are used to session fixation[24]. Hacker will compel
their target into tapping one connection built
impromtu using URL variable. Depending on existence of
protected sector, hacker will take advantage of an XSS
weakness.

Fig. 2. Again from beginning of procedure until session use,

this image describes mechanism of session fixation.

Bad configuration as well as deployment allows session
fixation. As a result, through successful Software product

https://doi.org/10.33807/monte.20232840
https://doi.org/10.33807/monte.20232840

ISSN 2661-2666 (Online) International Scientific Journal Monte (ISJM) DOI:

10.33807/monte.20232840 Volume 7, (No).2 (2023): April

50

architecture, above mentioned approaches of such vulnerability
are being removed[25].

III. PROPOSED ALGORITHMS

Here its propose a new approach for preventing hijacking

threats in this segment, focusing in recent study to current work,
also resolving their numerous implications.

A. One time cookies

That cookies gets substituted like connection authentication
keys, its suggested an alternative method. One time cookies,
this approach, offers a strong protection toward unauthorized
access, making sure they still are meeting needs of dynamically
dispense systems. OTC generally, keeps connection verification
and further connection monitoring functions apart.

Attacker's target throughout this model would be to gain
charge over connections that have been created through
customers of a website. OTC considers all inactive yet
aggressive polynomial time antagonists. Knowledge released
betwixt client's browser as well as website is accessible toward
silent adversaries. Data gets caught either of system (digital),
and even by system log files. Inactive adversaries may attempt
conducting or reusing authentication tokens depending
towards knowledge in order to sabotage another customer's
session connection. An aggressive attacker will have
similar knowledge possession like inactive opponent, however
attacker may also selectively manipulate enquiries as well as
replies sent betwixt web page and system. Proactive attacker,
may alter, construct, also prohibit messaging of entering its
desired target. Any successful attacker may also carry out
domain-level threats between the website also the app, such as
session fixation, cross-site scripting, also cross-site tracing.
Malicious software attempts of capturing OTC token or stealing
OTC permanent data from customer's device are both options
for a practical challenge. Here threats are not counted under
which attacker assumes possession including its victim's
account as well as operating system (for example, via
leveraging cache overload either malicious programs) but rather
threats mostly on software product architecture. Furthermore,
OTC hasn't had security from dishonesty threats. Encrypting the
configuration among one's authentication data during sign
in process, OTC uses HTTPS. Then as result, OTC expects if
HTTPS has been set up properly also securely. Developers don't
accept threats which compromise HTTPS's security assurances
throughout successful authentication. Attacker might even
extract customer's password, which is much useful
accreditation, whether alike threats were necessary.

Here are defined certain characteristics that must be present

in order for providing a reliable as well as realistic solution

for authorization cookie. Such characteristics were being used

for OTC build: This possible framework ought to have strong

user session authorization and be automatically protected

towards session hijacking is called connection honesty. For

demand authentication, this suggested algorithm doesn't need

condition inside website. Namely , through consideration

regarding system load condition, it really isn't distinct than

authorization cookies. Such characteristic are important towards

massively scalable websites. That theoretical system ought to be

identical with cookies in terms of customer interface. There is

no need for extra human engagement. Particularly, switching

through authorization cookies and OTC doesn't really affect that

customer functionality. This possible framework will provide

authentication tokens that are completely classified as well as

promises of honesty. Authorization token particularly, also

shouldn't release data that undermines website confidentiality,

being immune against cryptographic algorithms threats and

being abscond.

As order, OTC generates another specific token. The

connection key binds every token in specific demands;

therefore, token could become reusable over several demands.

Particularly , OTC tickets are stored in state details needed for

evaluating token. Every other card becomes secured using a

lengthy code that is exchanged across servers

throughout website. As a result, data contained throughout card

could become accessed by website servers. Details of the card

are not visible towards recipient. Creds are keys that are saved

inside application, while tokens are properties that are added

into each requisition.

B. SSL Stripping-based hijacking attacks

This architectural design is split into two sectors: server as

well as client side structures. This global selector collection

gets downloaded via a single system by customer. Many

of webpages inside this index have their safety ratings listed

here. Just like mentioned herein, such collection gets

displayed different levels to alert notifications towards target

consumers. Customer submits he's responses by consumers to

system on regular basis such that neural networks could use

them for boosting safety levels for webpages.

Customer mechanism operates through transmitting HTTP

POST calls received through websites as well as tracking them.

Requisition isn't apprehended anyway when link becomes

HTTPS. Moreover, if somehow demand isn't of POST kind,

inspection doesn't really exist. Next its searched whether page

contains HTTPS when person gives every POST call. Whether

this is the case, we couldn't intervene. Unless website uses

HTTP also has a passcode as well as sign in area, demand

becomes intercepted. Than we search whether page is already

inside any database after intercepting this message. Than

we get protection ranking through database, when something

exists within data set.

https://doi.org/10.33807/monte.20232840
https://doi.org/10.33807/monte.20232840

ISSN 2661-2666 (Online) International Scientific Journal Monte (ISJM) DOI:

10.33807/monte.20232840 Volume 7, (No).2 (2023): April

51

The server collects data about person's behavior through

different customers also utilizes this for increasing safety status

in webpages. Implementations on server gets divided to two

categories. Initially, we measure 50 percent differentiation

threshold regarding ours sample using websites within certain

current databases. For determining the linear regression r,

its used a excellently analytical methodology named divide

validity checking. Throughout this method, its divided the

customer information for also sites across mutually exclusive

subsets as well as looking for correlations among them.

C. Using modified OTC

Below you can find indeed elements

of presumed structures. Person, also known as a customer, will

be one that makes the case. If customer needs buying anything,

they can submit another message into server which includes

customer's login details. Customer would be granted an OTC

upon effective authorization, that OTC is used to verify

customer about any requisition user creates. When

any customer replies, it's also accompanied by an OTC.

Proxy seems being a machine which serves like middleman

betwixt any external system and the internet. It's always shown

on the customer's either on user's end. In other hand, rather than

utilizing proxy service on customer end, they utilize RPS

on server.

Like a result, RPS must process any call from customer.

RPS's goal is taking assigning OTC, address of IP, connection

ID, but also website signature, then RPS would search through

connection ID, OTC, IP address, also website signature with

every single arriving message. When either one of variables

shift, RPS will switch into different tab.

This really is the system to whom user sends an message.

That server verifies passwords, processes every user demand,

also communicates with users.

Below it is shown how suggested methodology operates.

The client inserts login details. Call gets into RPS

submitted, that collects each user's internet protocol

address search engine signatures as well as passes it all

into database. Database verifies passwords, executes call (i.e.,

tarns then delivers http call straight to user), yet not until passing

via algorithm. OTC is generated by RPS , either connection ID,

also sends those straight to user, along with reply. After that,

customer saves OTC which is sent. Customer also can submit

OTC through RPS within each call he/she makes. Between each

fresh call submitted mostly from customer, RPS tests this as well

as generates OTC anew. Because OTC, internet protocol

address, connection ID, or application signature shift, RPS halts

connection.

IV. FUTURE WORK

In this peper one time cookies are analysed and presented.
One time cookies within websites are an essential starting point
toward ensuring connection consistency across current
operating systems. For supporting OTC, technologies like Java
Servlets, and Ruby on Rails must be modified. Most good topic
implementations would require union assistance, whether within
protocols among various implementations.

Since HTTPS is hard even expensive to implement, multiple
people also searched towards a connection honesty approach
which could run across HTTP while also being protected toward
inactive system hackers . Which seems to be another intriguing
area of study which isn't addressed via one time cookies.

V. CONCLUSIONS

Session hijacking remains one significant problem which
any webpage owner as well as company should prioritize when
everything comes to protecting any online details. Here into this
scientific report covers many of the weaknesses associated with
accessing website, as well as attacks which an intruder could
face into compromising sensitive data.Here study discussed
different forms of connection intercepting attacks but also
whether they impact web operations. Majority of web-based
session hijacking are caused by spoofing hacks viruses, cross-
site scripts, as well as SQL injection attacks , among other
things. Strategies towards stopping connection hijacking as well
as methods employed among attackers for committing web-
based crimes are addressed. Prior research also shown that many
loopholes already remain throughout online payments,
necessitating an immediate implementation of such strong
amount of protection in websites which secure personal data
during assaults.

Through ages, certain dangers that come with using cookies
as connection authorization tokens are being established.

Solutions of verification cookies are being suggested,
although most haven't yet been implemented since them cannot
fulfill standards in big scalable online systems.
Most of suggested solutions, in particular, necessitate expensive
operate coordination through website, which would be
very major problem with scalable applications. Here OTC
is proposed, a premise safe solution of verification cookies,
throughout this analysis. OTC may be hardly immune towards
session theft however that often keeps cookies convenience as
well as consistency advantages.

VI. RERENCES

[1] (n.d.). Retrieved from XSS stealing cookies 101:
http://jehiah.cz/a/xss-stealing-cookies-101

[2] (n.d.). Retrieved from Deadliest web attacks : Entertaining
insights into web security:

https://doi.org/10.33807/monte.20232840
https://doi.org/10.33807/monte.20232840

ISSN 2661-2666 (Online) International Scientific Journal Monte (ISJM) DOI:

10.33807/monte.20232840 Volume 7, (No).2 (2023): April

52

https://deadliestwebattacks.com/2010/05/18/cross-site-
tracing-xst-the-misunderstood-vulnerability/

[3] Andrew Bortz, A. B. (2011). Origin Cookies: Session
Integrity for. Web 2.0 Security and Privacy Workshop .

[4] Annies Minu Sathiyaseelan, V. J. (2017). A Proposed
System for Preventing Session Hijacking with Modified
One-Time Cookies. International Conference On Big Data
Analytics and computational Intelligence (ICBDACI).

[5] Anuj Kumar Baitha, P. S. (2018). Session Hijacking and
Prevention Technique. International Journal of
Engineering & Technology.

[6] Ari Juels, M. J. (2006). Cache cookies for browser
authentication. Symposium on Security and Privacy. IEEE
.

[7] C. Jackson, A. B. (2016). Web privacy attacks on a unified
same-origin browser.

[8] Clover, A. (2002). Timing attacks on Web privacy (paper
and specific issue). Retrieved from
www.securiteam.com/securityreviews/5GP020A6LG.htm
l

[9] E. W. Felten, M. A. (2018). Timing attacks on Web
privacy. ACM Conference on Computer and
Communications.
http://www.cs.princeton.edu/sip/pub/webtiming.pdf.

[10] Enos LETSOALO, P. S. (2017). Session Hijacking Attacks
in Wireless Networks: A Review of Existing Mitigation
Techniques. IST-Africa. Africa: Paul Cunningham and
Miriam Cunningham .

[11] Goodin, D. (2009). Newfangled cookie attack
steals/poisons website creds. Retrieved from Theregister:
http://www.theregister.co.uk/
2009/11/04/website_cookie_stealing/print.html

[12] Israel O. Ogundele, A. O. (2020). Detection and Prevention
of Session Hijacking in Web Application Management.
International Journal of Advanced Research in Computer
and Communication Engineering. Computer Technology
Department, Yaba College of Technology, Yaba, Lagos,
Nigeria.

[13] Italo Dacosta, S. C. (n.d.). One-Time Cookies: Preventing
Session Hijacking Attacks with Stateless Authentication
Tokens. Georgia Institute of Technology.

[14] Jasim Hasan, A. M. (2019). Evaluation of Web Application
Session Security. Kingdom of Bahrain: University of
Bahrain.

[15] Jeevitha. R, N. B. (2017). Malicious node detection in
VANET Session Hijacking Attack. Coimbatore, India:
Dr.G.R.Damodaran College of Science.

[16] Karis D’silva, V. J. (2017). An Effective Method for
Preventing SQL Injection Attack and Session Hijacking.
2nd IEEE International Conference On Recent Trends in
Electronics Information & Communication Technology
(RTEICT). India: University, Manipal, India.

[17] Kevin Fu, E. S. (2001). Dos and Don’ts of Client
Authentication on the Web. Security Symposium.
USENIX.

[18] Mainduddin Ahmad Jonas, M. S. (2018). An Intelligent
System for Preventing SSL Stripping-based Session
Hijacking Attacks. Department of Computer Science and
Engineering, Bangladesh University of Engineering and
Technology, Weisberg Division of Computer Science,
Marshall University, Huntington, WV.

[19] Namitha P, K. P. (2018). A Survey on Session
Management Vulnerabilities in Web Application.
International Conference on Control, Power,
Communication and Computing Technologies
(ICCPCCT).

[20] Nidhi Thakkar, R. V. (2018). Secure Model for Session
Hijacking using Hashing Algorithm. Computer Science &
Engineering, NSIT, Jetalpur, Ahmedabad.

[21] Qiao Hu, G. P. (2018). A Session Hijacking Attack on
Physical Layer Key Generation Agreement. University of
Hong Kong.

[22] Renascence Tarafder Prapty, S. A. (2020). Preventing
Session Hijacking using Encrypted One-Time-Cookies.
Huntington, WV, USA: Weisberg Division of Computer
Science, Marshall University.

[23] Rupinder Gill, J. S. (2006). Experiences in Passively
Detecting Session Hijacking Attacks in IEEE 802.11
Networks. Australia: Queensland University of
Technology.

[24] Stefano Calzavara, A. R. (2018). Sub-session hijacking on
the web: Root causes and prevention. Italy: Dipartimento
di Scienze Ambientali, Informatica e Statistica, Università
Ca’ Foscari Venezia.

[25] Visaggio, C. A. (2010). Session Management
Vulnerabilities in Today's Web. IEEE Security and Privacy
Magazine .

https://doi.org/10.33807/monte.20232840
https://doi.org/10.33807/monte.20232840

